Exercice 1. Deux sous-espaces de \mathbb{R}^3

On considère les deux parties suivantes de \mathbb{R}^3 :

$$F = \{(x, y, z) \in \mathbb{R}^3, \ x + 2y + 4z = 0 \text{ et } x - 3y - 2z = 0\}$$

$$G = \{(a-b, a-b, a+2b) \in \mathbb{R}^3, (a,b) \in \mathbb{R}^2\}$$

Montrer qu'il s'agit de deux sous-espaces vectoriels de \mathbb{R}^3 . Donner une base de chacun d'entre eux.

Exercice 2. Quelques espaces

Pour chaque espace vectoriel suivant, déterminer s'il est ou non de dimension finie et, le cas échéant, déterminer sa dimension.

1. L'ensemble des fonctions $f: \mathbb{R} \to \mathbb{R}$ telles qu'il existe $(a, b, c) \in \mathbb{R}^3$ tel que

$$\forall x \in \mathbb{R}, \ f(x) = \left(ax^2 + bx + c\right)\cos x$$

- 2. À $p \in \mathbb{N}^*$ fixé, l'ensemble des suites réelles p-périodiques
- 3. $\mathbb{R}^{\mathbb{R}}$

Exercice 3. Base de \mathbb{R}^3

Déterminer une condition nécessaire et suffisante sur $t \in \mathbb{R}$ pour que la famille ((1,0,t);(1,1,t);(t,0,1)) forme une base de \mathbb{R}^3 .

Exercice 4. Bases de sous-espaces vectoriels

Déterminer une base des sous-espaces vectoriels suivants :

1.
$$\{(x, y, z) \in \mathbb{R}^3, x + 2y + z = 0\}$$

3.
$$\{(x, y, z, t) \in \mathbb{R}^4, x + y + z + t = 0\}$$

2.
$$\left\{P \in \mathbb{R}_3[X], P\left(X^2\right) = \left(X^3 + 1\right)P\right\}$$

Exercice 5. *Vrai ou faux?*

E est un espace de dimension finie, x_1, \cdots, x_p sont des vecteurs de E. Que dire des affirmations suivantes?

- 1. Si x_1, \dots, x_p sont deux à deux non colinéaires, alors la famille (x_1, \dots, x_p) est libre.
- 2. Si aucun x_i n'est combinaison linéaire des autres, alors la famille (x_1, \dots, x_p) est libre.

Exercice 6. *Un espace de fonctions*

On note E l'ensemble des fonctions de la forme $x \mapsto A \sin(x + \varphi)$, A et φ décrivant \mathbb{R} . Montrer que E est un sous-espace vectoriel de C (\mathbb{R} , \mathbb{R}). Déterminer sa dimension.

Exercice 7. Supplémentaires dans \mathbb{R}^3

Dans \mathbb{R}^3 , déterminer une base et un supplémentaire des deux sous-espaces vectoriels suivants :

1.
$$Vect((-1,1,0);(2,0,1);(1,1,1))$$

2.
$$\{(x, y, z) \in \mathbb{R}^3, x - 2y + 3z = 0\}$$

Exercice 8. Rang

Déterminer le rang des familles de vecteurs suivantes de \mathbb{R}^4 . Sont-elles libres? Génératrices de \mathbb{R}^4 ?

- 1. ((1,1,1,1); (1,-1,1,-1); (1,0,1,1))
- 2. ((1,1,0,1);(1,-1,1,0);(2,0,1,1);(0,2,-1,1))

Exercice 9. Calcul de rang

Calculer le rang de l'application $(x,y)\mapsto (x+y,x-y,2x+y)$ de \mathbb{K}^2 dans \mathbb{K}^3 . Calculer celui de l'application $(x,y,z)\mapsto (x+y+z,x-y-z)$ de \mathbb{K}^3 dans \mathbb{K}^2 . Sont-elles injectives? Surjectives? Quelle est la dimension de leur noyau? Déterminer le noyau de la deuxième.

Exercice 10. Endomorphisme de polynômes

Dans $E = \mathbb{R}_3[X]$, on pose $A = X^4 - 1$ et $B = X^4 - X$.

Pour tout $P \in E$, on note $\varphi(P)$ le reste R dans la division euclidienne de AP par B.

Montrer que arphi est un endomorphisme de E. Quel est son noyau? Quelle est son image?

Exercice 11. Pas de dimension finie

Montrer que $P \mapsto (P(0), P')$ est un isomorphisme de $\mathbb{K}[X]$ sur $\mathbb{K} \times \mathbb{K}[X]$. En déduire que $\mathbb{K}[X]$ n'est pas de dimension finie.

Exercice 12. *L'herbe sera plus verte*

Soit F,G deux sous-espaces vectoriels de dimension finie d'un espace vectoriel E. Déterminer le noyau et l'image de l'application $(f,g)\mapsto f+g$ de $F\times G$ dans E. Quelle formule (déjà démontrée en cours) peut-on en déduire?

Exercice 13. Endomorphismes tels que Ker(f) = Im(f)

Soit E un espace vectoriel de dimension n.

- 1. Montrer que n est pair si et seulement si il existe $f \in \mathcal{L}(E)$ tel que $\mathrm{Im}(f) = \mathrm{Ker}(f)$.
- 2. On suppose n pair. Montrer que pour $f \in \mathcal{L}(E)$, $\mathrm{Im}(f) = \mathrm{Ker}(f) \iff \mathrm{rg}(f) = \frac{n}{2}$ et $f^2 = 0_{\mathcal{L}(E)}$.

Exercice 14. CC INP 64

Soit f un endomorphisme d'un espace vectoriel E de dimension n.

- 1. Démontrer que : $E = \operatorname{Im} f \oplus \operatorname{Ker} f \Longrightarrow \operatorname{Im} f = \operatorname{Im} f^2$.
- 2. (a) Démontrer que : $\operatorname{Im} f = \operatorname{Im} f^2 \iff \operatorname{Ker} f = \operatorname{Ker} f^2$.
 - (b) Démontrer que : $\operatorname{Im} f = \operatorname{Im} f^2 \Longrightarrow E = \operatorname{Im} f \oplus \operatorname{Ker} f$.

Exercice 15. CC INP 55

Soit a un nombre complexe. On note E l'ensemble des suites à valeurs complexes telles que

$$\forall n \in \mathbb{N}, u_{n+2} = 2au_{n+1} + 4(ia - 1)u_n \text{ avec } (u_0, u_1) \in \mathbb{C}^2$$

1. (a) Prouver que *E* est un sous-espace vectoriel de l'ensemble des suites à valeurs complexes.

- (b) Déterminer, en le justifiant, la dimension de E.
- 2. Dans cette question, on considère la suite de E définie par $u_0 = 1$ et $u_1 = 1$. Exprimer, pour tout entier naturel n, le nombre complexe u_n en fonction de n.

Indication: discuter suivant les valeurs de *a*.

Exercice 16. CC INP 90

 \mathbb{K} désigne le corps des réels ou celui des complexes. Soient a_1, a_2, a_3 trois scalaires distincts donnés de \mathbb{K} .

- 1. Montrer que $\Phi: \mathbb{K}_2[X] \longrightarrow \mathbb{K}^3$ est un isomorphisme d'espaces vectoriels. $P \longmapsto (P(a_1), P(a_2), P(a_3))$
- 2. On note (e_1, e_2, e_3) la base canonique de \mathbb{K}^3 et on pose $\forall k \in \{1, 2, 3\}, L_k = \Phi^{-1}(e_k)$.
 - (a) Justifier que (L_1, L_2, L_3) est une base de $\mathbb{K}_2[X]$.
 - (b) Exprimer les polynômes L_1, L_2 et L_3 en fonction de a_1, a_2 et a_3 .
- 3. Soit $P \in \mathbb{K}_2[X]$. Déterminer les coordonnées de P dans la base (L_1, L_2, L_3) .
- 4. **Application :** On se place dans \mathbb{R}^2 muni d'un repère orthonormé et on considère les trois points A(0,1), B(1,3), C(2,1).

Déterminer une fonction polynomiale de degré 2 dont la courbe passe par les points A, B et C.

Exercice 17. Un endomorphisme de polynômes

On note Δ l'endomorphisme $P \mapsto P(X+1) - P(X)$ de $\mathbb{R}[X]$.

- 1. Déterminer $Ker(\Delta)$.
- 2. Déterminer $\operatorname{Im}(\Delta_{\mathbb{R}_n[X]})$ pour $n \in \mathbb{N}^*$.
- 3. Montrer que Δ est surjectif de $\mathbb{R}[X]$ sur lui-même.

Exercice 18. Familles

Dans \mathbb{R}^4 , on considère les familles de vecteurs suivants :

- 1. $v_1 = (1, 1, 1, 1), v_2 = (0, 1, 2, -1), v_3 = (1, 0, -2, 3), v_4 = (2, 1, 0, -1), v_5 = (4, 3, 2, 1)$
- 2. $v_1 = (1, 2, 3, 4), v_2 = (0, 1, 2, -1), v_3 = (3, 4, 5, 16)$
- 3. $v_1 = (1, 2, 3, 4), v_2 = (0, 1, 2, -1), v_3 = (2, 1, 0, 11), v_4 = (3, 4, 5, 14)$

Ces vecteurs forment-ils une famille libre? Si oui, la compléter pour obtenir une base de \mathbb{R}^4 . Sinon, donner des relations de dépendance entre eux et extraire de cette famille une base du sous-espace engendré par celle-ci.

Ces vecteurs forment-ils une famille génératrice de \mathbb{R}^4 ? Si c'est le cas, en extraire au moins une base de \mathbb{R}^4 . Sinon, donner la dimension du sous-espace qu'ils engendrent.

Exercice 19.

Soit $n \in \mathbb{N}$, $a \in \mathbb{R}$.

- 1. Montrer que $((X-a)^i)_{0 \le i \le n}$ est une base de $\mathbb{R}_n[X]$.
- 2. Donner les coordonnées de $P \in \mathbb{R}_n[X]$ dans cette base.

Exercice 20.

Dans $\mathbb{R}_3[X]$, soit $P = X^3 + 2X - 1$ et Q = 2X - 1. Déterminer une base de $\mathbb{R}_3[X]$ dont P et Q sont des éléments.

Exercice 21.

Soit $n \in \mathbb{N}$, $\alpha \in \mathbb{K}$ et $H = \{P \in \mathbb{K}_n[X], P(\alpha) = 0\}$. Montrer que H est un hyperplan de $\mathbb{K}_n[X]$ et en déterminer une base.