DM6 - STRUCTURES ALGÉBRIQUES

À rendre pour le 24/01/2025. Consignes de présentation : cf. DM1

Exercice 1. L'anneau $\mathbb{Z}/n\mathbb{Z}$

On fixe un $n \in \mathbb{N}$, $n \ge 2$. Pour tout $k \in \mathbb{Z}$, on note \overline{k} le reste de la division euclidienne de k par n.

1. Montrer que $\left\{\overline{k},\ k\in\mathbb{Z}\right\}=\left\{\overline{0},\overline{1},\ldots,\overline{n-1}\right\}$.

Dans la suite cet ensemble est noté $\mathbb{Z}/n\mathbb{Z}$.

- 2. (a) Soient $k,\ell\in\mathbb{Z}$. Montrer que $\overline{k}=\overline{\ell}$ si et seulement si $k\equiv\ell[n]$.
 - (b) Soient $k, k', \ell, \ell' \in \mathbb{Z}$ tels que $\overline{k} = \overline{k'}$ et $\overline{\ell} = \overline{\ell'}$. Montrer que $\overline{k + \ell} = \overline{k' + \ell'}$.

Ceci permet de définir une addition \oplus sur $\mathbb{Z}/n\mathbb{Z}$: soient $a,b\in\mathbb{Z}/n\mathbb{Z}$. Alors il existe $k,\ell\in\mathbb{Z}$ tels que $a=\overline{k}$ et $b=\overline{\ell}$. On pose alors $a\oplus b=\overline{k+\ell}$, c'est-à-dire $\overline{k}\oplus\overline{\ell}=\overline{k+\ell}$, ce qui est défini sans ambiguité grâce à la question 2b). Pour plus de commodités, \oplus sera aussi notée +.

(c) Soient $k, k', \ell, \ell' \in \mathbb{Z}$ tels que $\overline{k} = \overline{k'}$ et $\overline{\ell} = \overline{\ell'}$. Montrer que $\overline{k \times \ell} = \overline{k' \times \ell'}$.

Ceci permet de définir une multiplication \otimes sur $\mathbb{Z}/n\mathbb{Z}$: soient $a,b\in\mathbb{Z}/n\mathbb{Z}$. Alors il existe $k,\ell\in\mathbb{Z}$ tels que $a=\overline{k}$ et $b=\overline{\ell}$. On pose alors $a\otimes b=\overline{k}\times\overline{\ell}$, c'est-à-dire $\overline{k}\otimes\overline{\ell}=\overline{k}\times\overline{\ell}$, ce qui est défini sans ambiguité grâce à la question 2c). Pour plus de commodités, \otimes sera aussi notée \times .

- 3. Pour vérifier que vous avez bien compris:
 - (a) Donner les éléments de $\mathbb{Z}/6\mathbb{Z}$.
 - (b) Dans $(\mathbb{Z}/6\mathbb{Z}, +, \times)$, calculer $\overline{2} + \overline{3}$, $\overline{3} + \overline{5}$, $\overline{1} + \overline{5}$, $\overline{3} \times \overline{5}$ et $\overline{2} \times \overline{3}$.
- 4. (c) Montrer que $(\mathbb{Z}/n\mathbb{Z}, +)$ est un groupe abélien.
 - (d) Montrer que $(\mathbb{Z}/n\mathbb{Z}, +, \times)$ est un anneau. Est-il commutatif?
- 5. (a) Soit $k \in [2, n-1]$ tel que $k \mid n$. Montrer alors qu'il existe $a \in \mathbb{Z}/n\mathbb{Z}$ tel que $a \neq 0$ et $\overline{k} \times a = \overline{0}$.
 - (b) Soit $k \in [\![2,n-1]\!]$ tel que k et n ne soient pas premiers entre eux. Montrer alors qu'il existe $a \in \mathbb{Z}/n\mathbb{Z}$ tel que $a \neq 0$ et $\overline{k} \times a = \overline{0}$.
 - (c) Soit $k \in [1, n-1]$ tel que $k \wedge n = 1$. En utilisant le théorème de Bézout, montrer qu'il existe $m \in \mathbb{Z}$ tel que $\overline{k} \times \overline{m} = \overline{1}$. En déduire que \overline{k} est inversible dans $\mathbb{Z}/n\mathbb{Z}$ pour la loi \times .
- 6. Montrer que $(\mathbb{Z}/n\mathbb{Z}, +\times)$ est un corps si, et seulement si, n est premier.
- 7. Pour vérifier que vous avez bien compris : dans $\mathbb{Z}/150\mathbb{Z}$, dire si 81 et 143 sont inversibles. Pour chacun d'eux, donner son inverse s'il existe, sinon donner un élément non nul a de $\mathbb{Z}/150\mathbb{Z}$ tel que $a \times b = \overline{0}$ (avec $b = \overline{81}$ ou $\overline{143}$).